Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 6.954
Filter
1.
Reprod Domest Anim ; 59(5): e14573, 2024 May.
Article in English | MEDLINE | ID: mdl-38712666

ABSTRACT

The aim of this study was to assess the addition of 2% sodium caseinate in a commercial egg yolk-based medium in frozen ovine semen. Eight Dorper males were used for the study. The ejaculate was divided into two portions and frozen without (G1) or with the addition of 2% sodium caseinate (G2). Kinetic parameters were evaluated using CASA (computer-assisted sperm analysis), and membrane and acrosome integrity as well as oxidative stress were assessed using flow cytometry. After thawing, a thermoresistance test was conducted at time points T0 and T90. For the fertility test, 100 ewes were inseminated with semen from two rams selected based on in vitro parameters, one with good post-thaw quality (+70% total motility) and the other with low post-thaw quality (-55% total motility). For the fertility test, the females were divided into 4 groups for insemination: low-quality ram without caseinate (GBS = 25) and with caseinate (GBC = 25), and high-quality ram without caseinate (GAS = 25) and with caseinate (GAC = 25). Regarding the results of sperm kinetics, there was a statistically significant difference in the parameters of average path velocity (VAP) and curvilinear velocity (VCL) between the group frozen with BotuBov and the group with added caseinate. At time point T90, straight-line velocity maintained a trend (p < .06), with BotuBov® (BB group) being superior to caseinate this time, and in the linearity parameter, caseinate was superior to BotuBov®. Flow cytometry analysis showed no difference between any of the evaluated tests. In the fertility test, there was no statistically significant difference in the pregnancy rate between the BotuBOV® group (23%, 11/48) and the sodium caseinate group (BC group) (33%, 17/52), and no differences were observed in the male versus diluent interaction (p = .70). In conclusion, sodium caseinate supplementation did not influence sperm kinetic parameters and the fertility of sheep.


Subject(s)
Caseins , Cryopreservation , Insemination, Artificial , Semen Analysis , Semen Preservation , Sperm Motility , Animals , Semen Preservation/veterinary , Semen Preservation/methods , Male , Female , Cryopreservation/veterinary , Cryopreservation/methods , Insemination, Artificial/veterinary , Caseins/pharmacology , Semen Analysis/veterinary , Pregnancy , Sperm Motility/drug effects , Spermatozoa/drug effects , Spermatozoa/physiology , Cryoprotective Agents/pharmacology , Semen/drug effects , Fertility/drug effects , Sheep , Sheep, Domestic
2.
Birth Defects Res ; 116(5): e2345, 2024 May.
Article in English | MEDLINE | ID: mdl-38716582

ABSTRACT

BACKGROUND: Abrocitinib is a Janus kinase (JAK) 1 selective inhibitor approved for the treatment of atopic dermatitis. Female reproductive tissues were unaffected in general toxicity studies, but an initial female rat fertility study resulted in adverse effects at all doses evaluated. A second rat fertility study was conducted to evaluate lower doses and potential for recovery. METHODS: This second study had 4 groups of 20 females each administered abrocitinib (0, 3, 10, or 70 mg/kg/day) 2 weeks prior to cohabitation through gestation day (GD) 7. In addition, 2 groups of 20 rats (0 or 70 mg/kg/day) were dosed for 3 weeks followed by a 4-week recovery period before mating. All mated females were evaluated on GD 14. RESULTS: No effects were observed at ≤10 mg/kg/day. At 70 mg/kg/day (29x human exposure), decreased pregnancy rate, implantation sites, and viable embryos were observed. All these effects reversed 4 weeks after the last dose. CONCLUSIONS: Based on these data and literature on the potential role of JAK signaling in implantation, we hypothesize that these effects may be related to JAK1 inhibition and, generally, that peri-implantation effects such as these, in the absence of cycling or microscopic changes in nonpregnant female reproductive tissues, are anticipated to be reversible.


Subject(s)
Fertility , Janus Kinase 1 , Pyrimidines , Sulfonamides , Female , Animals , Pregnancy , Rats , Fertility/drug effects , Janus Kinase 1/antagonists & inhibitors , Janus Kinase 1/metabolism , Pyrimidines/pharmacology , Sulfonamides/pharmacology , Rats, Sprague-Dawley , Embryo Implantation/drug effects , Janus Kinase Inhibitors/pharmacology , Pregnancy Rate
3.
Parasit Vectors ; 17(1): 228, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755640

ABSTRACT

BACKGROUND: Ivermectin is a well-tolerated anthelminthic drug with wide clinical and veterinary applications. It also has lethal and sublethal effects on mosquitoes. Mass drug administration with ivermectin has therefore been suggested as an innovative vector control tool in efforts to curb emerging insecticide resistance and reduce residual malaria transition. To support assessments of the feasibility and efficacy of current and future formulations of ivermectin for vector control, we sought to establish the relationship between ivermectin concentration and its lethal and sublethal impacts in a primary malaria vector. METHODS: The in vitro effects of ivermectin on daily mortality and fecundity, measured by egg production, were assessed up to 14 days post-blood feed in a laboratory colony of Anopheles coluzzii. Mosquitoes were fed ivermectin in blood meals delivered by membrane feeding at one of six concentrations: 0 ng/ml (control), 10 ng/ml, 15 ng/ml, 25 ng/ml, 50 ng/ml, 75 ng/ml, and 100 ng/ml. RESULTS: Ivermectin had a significant effect on mosquito survival in a concentration-dependent manner. The LC50 at 7 days was 19.7 ng/ml. The time to median mortality at ≥ 50 ng/ml was ≤ 4 days, compared to 9.6 days for control, and 6.3-7.6 days for ivermectin concentrations between 10 and 25 ng/ml. Fecundity was also affected; no oviposition was observed in surviving females from the two highest concentration treatment groups. While females exposed to 10 to 50 ng/ml of ivermectin did oviposit, significantly fewer did so in the 50 ng/ml treatment group compared to the control, and they also produced significantly fewer eggs. CONCLUSIONS: Our results showed ivermectin reduced mosquito survival in a concentration-dependent manner and at ≥ 50 ng/ml significantly reduced fecundity in An. coluzzii. Results indicate that levels of ivermectin found in human blood following ingestion of a single 150-200 µg/kg dose would be sufficient to achieve 50% mortality across 7 days; however, fecundity in survivors is unlikely to be affected. At higher doses, a substantial impact on both survival and fecundity is likely. Treating human populations with ivermectin could be used as a supplementary malaria vector control method to kill mosquito populations and supress their reproduction; however strategies to safely maintain mosquitocidal blood levels of ivermectin against all Anopheles species require development.


Subject(s)
Anopheles , Fertility , Insecticides , Ivermectin , Mosquito Control , Mosquito Vectors , Ivermectin/pharmacology , Animals , Anopheles/drug effects , Female , Mosquito Vectors/drug effects , Mosquito Control/methods , Insecticides/pharmacology , Fertility/drug effects , Malaria/transmission , Dose-Response Relationship, Drug , Feeding Behavior/drug effects
5.
Eur J Pharm Sci ; 197: 106768, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38643940

ABSTRACT

The negative coordination of growth hormone secretagogue receptor (GHS-R) and growth hormone-releasing hormone receptor (GHRH-R) involves in the repair processes of cellular injury. The allosteric U- or H-like modified GHRH dimer Grinodin and 2Y were comparatively evaluated in normal Kunming mice and hamster infertility models induced by CPA treatment. 1-3-9 µg of Grinodin or 2Y per hamster stem-cell-exhaustion model was subcutaneously administered once a week, respectively inducing 75-69-46 or 45-13-50 % of birth rates. In comparison, the similar mole of human menopausal gonadotropin (hMG) or human growth hormone (hGH) was administered once a day but caused just 25 or 20 % of birth rates. Grinodin induced more big ovarian follicles and corpora lutea than 2Y, hMG, hGH. The hMG-treated group was observed many distorted interstitial cells and more connective tissues and the hGH-treated group had few ovarian follicles. 2Y had a plasma lifetime of 21 days and higher GH release in mice, inducing lower birth rate and stronger individual specificity in reproduction as well as only promoting the proliferation of mesenchymal-stem-cells (MSCs) in the models. In comparison, Grinodin had a plasma lifetime of 30 days and much lower GH release in mice. It significantly promoted the proliferation and activation of ovarian MSCs together with the development of follicles in the models by increasing Ki67 and GHS-R expressions, and decreasing GHRH-R expression in a dose-dependent manner. However, the high GH and excessive estrogen levels in the models showed a dose-dependent reduction in fertility. Therefore, unlike 2Y, the low dose of Grinodin specifically shows low GHS-R and high GHRH-R expressions thus evades GH and estrogen release and improves functions of organs, resulting in an increase of fertility.


Subject(s)
Cell Proliferation , Mesenchymal Stem Cells , Ovary , Female , Animals , Mice , Cell Proliferation/drug effects , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Ovary/drug effects , Ovary/metabolism , Growth Hormone-Releasing Hormone/metabolism , Fertility/drug effects , Receptors, Neuropeptide/metabolism , Humans , Allosteric Regulation/drug effects , Receptors, Ghrelin/metabolism , Cricetinae , Receptors, Pituitary Hormone-Regulating Hormone/metabolism , Dimerization
6.
Open Vet J ; 14(3): 822-829, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38682144

ABSTRACT

Background: Reproductive efficiency affects dairy cow profitability. Ovarian function in postpartum (P.P.) has been better understood using ultrasound and hormonal assays. Optimizing ovulation synchronization and carefully timing artificial insemination (TAI) can greatly enhance reproductive rates in dairy cows. Aim: This experiment was designed to investigate the reproductive performance and ovarian activity in early postpartum lactating dairy cows using the Presynch-PGF2α, Ovsynch protocol, and TAI. Methods: Randomly the cows were assigned to a control group and a treatment group, based on the chronological order of their calving date. On day 14 P.P., both groups received two cloprostenol treatments, 14 days apart. Ultrasonographic inspections were conducted on day 14 to check ovarian activity and uterine contents. On day 11, after presynchronization, cows in the treatment group were given 100 µg IM. of cystorelin, followed by a luteolytic dose of 500 µg IM., cloprostenol on day 7, and a second dose of cystorelin on day 8 (36 hours later). After the second cystorelin injection by 16-20 hours, cows were inseminated, while the control group had all cows displaying spontaneous estrus between day 0 and day 28 were artificially inseminated. Results: Ovarian activity began to improve at 82.61% on day 19 P.P., with complete recovery between days 24 and 27 P.P. The second cloprostenol injection approached, causing follicular size to reach 8.41 ± 1.04 mm. After the second injection, ovarian activity switched from follicular to luteal, with corpus luteum rates of 23.91% and 26.1%. The presynchronized PGF2α regimen significantly enhanced ovarian activity from days 19-35 P.P. Ovulation and pregnancy rates in the Ovsynch group were 54.2% and 41.7% at the first timed artificial insemination (TAI), compared to 54.5% and 31.8% in the control group. There was no significant impact between them; it was just high in the presynchronized Ovsynch group. However, the P.P. period was minimized to 47-49 days till the first AI reached a 41.7% pregnancy rate and 20.8% at the second AI, for an overall 62.5%. Conclusion: The current study concludes that presynchronization during preservice in clinically normal P.P. dairy cows reduces P.P. duration, increases ovarian activity performance, and reduces ovarian dysfunctions from day 19 to day 35 P.P., as well as improves the pregnancy rate.


Subject(s)
Cattle , Estrus Synchronization , Fertility , Ovulation , Libya , Female , Animals , Postpartum Period , Estrus Synchronization/methods , Ovary/diagnostic imaging , Ovary/drug effects , Fertility/drug effects , Fertility/physiology , Progesterone/metabolism , Ovulation/drug effects , Ultrasonography/veterinary , Dinoprost/pharmacology , Gonadotropin-Releasing Hormone/pharmacology , Cloprostenol/pharmacology , Insemination, Artificial/veterinary
7.
Eur J Oral Sci ; 132(3): e12988, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38664917

ABSTRACT

Our study investigated the impact on male mouse fertility and reproduction of long-term (14 weeks) exposure to triethylene glycol dimethacrylate (TEGDMA), a co-monomer of resin-based compounds, at doses of 0.01, 0.1, 1, and 10 ppm. Test and control mice were then paired with sexually mature untreated female mice and their fertility evaluated. Females paired with males exposed to all TEGDMA doses exhibited a significant decline in pregnancy rates, and significant increases in the total embryonic resorption-to-implantation ratio, except for males exposed to 0.01 ppm TEGDMA. Males in the highest dose group (10 ppm) showed significant increases in seminal vesicle and preputial gland weights. They also had significantly higher serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) than the controls, and the 0.01 ppm dosage group for FSH levels. TEGDMA exposure resulted in notable histopathological alterations in the testis, with detachment of germ cells and shedding of germinal epithelium into the tubule lumen. These results strongly indicate that TEGDMA exposure has detrimental consequences on the reproductive abilities and functions in male mice through disruption of the standard hormonal regulation of the reproductive system, leading to changes in spermatogenesis and ultimately leading to decreased fertility.


Subject(s)
Follicle Stimulating Hormone , Luteinizing Hormone , Polyethylene Glycols , Polymethacrylic Acids , Testis , Animals , Male , Mice , Female , Polymethacrylic Acids/toxicity , Follicle Stimulating Hormone/blood , Luteinizing Hormone/blood , Testis/drug effects , Testis/pathology , Pregnancy , Fertility/drug effects , Reproduction/drug effects , Organ Size/drug effects , Seminal Vesicles/drug effects , Pregnancy Rate , Embryo Implantation/drug effects , Dose-Response Relationship, Drug
8.
Pestic Biochem Physiol ; 201: 105899, 2024 May.
Article in English | MEDLINE | ID: mdl-38685208

ABSTRACT

This study investigated the function of the MDR49 gene in Aedes aegypti. MDR49 mutants were constructed using CRISPR/Cas9 technology; the mutation led to increased sensitivity to ivermectin (LC50: from 1.3090 mg L-1 to 0.5904 mg L-1), and a reduction in midgut trypsin activity. These findings suggest that the P-gp encoded by MDR49 confers resistance to ivermectin and impacts the reproductive function in Ae. aegypti. RNA interference technology showed that knockdown of MDR49 gene resulted in a significant decrease in the expression of VGA1 after a blood meal, as well as a decrease in the number of eggs laid and their hatching rate. LC-MS revealed that following ivermectin treatment, the MDR493d+2s/3d+2s strain larvae exhibited significantly higher drug concentrations in the head and fat body compared to the wild type. Modeling of inward-facing P-gp and molecular docking found almost no difference in the affinity of P-gp for ivermectin before and after the mutation. However, modeling of the outward-facing conformation demonstrated that the flexible linker loop between TM5 and TM6 of P-gp undergoes changes after the mutation, resulting in a decrease in trypsin activity and an increase in sensitivity to ivermectin. These results provide useful insights into ivermectin resistance and the other roles played by the MDR49 gene.


Subject(s)
Aedes , Insect Proteins , Ivermectin , Animals , Aedes/drug effects , Aedes/genetics , Aedes/metabolism , Ivermectin/pharmacology , Insect Proteins/metabolism , Insect Proteins/genetics , Trypsin/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Fertility/drug effects , Insecticide Resistance/genetics , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/pharmacology , Molecular Docking Simulation , Insecticides/pharmacology
9.
Pestic Biochem Physiol ; 201: 105879, 2024 May.
Article in English | MEDLINE | ID: mdl-38685245

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda (J.E. Smith) (Lepidoptera, Noctuidae), is a highly polyphagous invasive pest that damages various crops. Pesticide control is the most common and effective strategy to control FAW. In this study, we evaluated the toxicity of metaflumizone and indoxacarb against third-instar FAW larvae using the insecticide-incorporated artificial diet method under laboratory conditions. Both metaflumizone and indoxacarb exhibited substantial toxicity against FAW, with LC50 values of 2.43 and 14.66 mg/L at 72 h, respectively. The sublethal effects of metaflumizone and indoxacarb on parental and F1 generation FAW were investigated by exposing third-instar larvae to LC10 and LC30 concentrations of these insecticides. Sublethal exposure to these two insecticides significantly shortened adult longevity, extended pupal developmental times and led to reduced pupal weight, pupation rates, and adult fecundity in the treated parental generation and F1 generation at LC10 or LC30 concentrations, in comparison to the control group. The larval developmental times were shortened in the parental generation but prolonged in the F1 generation, after being treated with sublethal concentrations of metaflumizone. Furthermore, larvae exposed to LC10 or LC30 concentrations of indoxacarb exhibited elevated activity levels of cytochrome P450 monooxygenase and glutathione S-transferase, which coincides with the observed synergistic effect of piperonyl butoxide and diethyl maleate. In conclusion, the high toxicity and negative impact of metaflumizone and indoxacarb on FAW provided significant implications for the rational utilization of insecticides against this pest.


Subject(s)
Insecticides , Larva , Oxazines , Semicarbazones , Spodoptera , Animals , Spodoptera/drug effects , Spodoptera/growth & development , Insecticides/toxicity , Insecticides/pharmacology , Semicarbazones/pharmacology , Larva/drug effects , Oxazines/toxicity , Longevity/drug effects , Fertility/drug effects , Inactivation, Metabolic
10.
Reprod Domest Anim ; 59(4): e14568, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38646997

ABSTRACT

Sperm cryopreservation is one of the main methods for preserving rooster sperm for artificial insemination (AI) in commercial flocks. Yet, rooster sperm is extremely susceptible to reactive oxygen species (ROS) produced during the freezing process. Oxidative stress could be prevented by using nanoparticles containing antioxidants. The present study was conducted to investigate the effect of zinc oxide nanoparticles (ZnONP) in rooster semen freezing extender on quality parameters and fertility potential. For this aim, semen samples were collected and diluted in Lake extenders as follows: control: Lake without ZnONP, ZnO100: Lake with 100-µg zinc oxide (ZnO), ZnONP50: Lake with 50-µg ZnONP, ZnONP100: Lake with 100-µg ZnONP and ZnONP200: Lake with 200-µg ZnONP. After freezing and thawing, sperm motility, viability, membrane integrity, morphology, mitochondrial activity, acrosome integrity, DNA fragmentation, lipid peroxidation and ROS, as well as fertility and hatchability were assessed. According to the current results, higher rates of motility, membrane integrity, mitochondrial activity, acrosome integrity and live cells were detected in the ZnO100, ZnONP50 and ZnONP100 groups compared to other groups (p ≤ .05). Yet, the percentage of dead cells, DNA fragmentation, lipid peroxidation and ROS levels were lower in the mentioned groups (p ≤ .05). Furthermore, a higher percentage of fertility was observed in the ZnO100 and ZnONP100 groups than in the control group (p ≤ .05). In conclusion, the use of 100-µg ZnO and 50- to 100-µg ZnONP represents a valuable and safe additive material that could be used to improve the quality and fertility potential of rooster sperm under cryopreservation conditions.


Subject(s)
Chickens , Cryopreservation , Fertility , Reactive Oxygen Species , Semen Preservation , Sperm Motility , Spermatozoa , Zinc Oxide , Male , Animals , Zinc Oxide/pharmacology , Cryopreservation/veterinary , Cryopreservation/methods , Spermatozoa/drug effects , Spermatozoa/physiology , Reactive Oxygen Species/metabolism , Semen Preservation/veterinary , Semen Preservation/methods , Fertility/drug effects , Sperm Motility/drug effects , DNA Fragmentation/drug effects , Lipid Peroxidation/drug effects , Nanoparticles , Cryoprotective Agents/pharmacology , Semen Analysis/veterinary , Female
11.
Arch Toxicol ; 98(6): 1909-1918, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38553590

ABSTRACT

Previously, we found that the ultraviolet filter benzophenone-3 (BP3) causes fetal growth restriction in mice when is applied when implantation occurs (first week of gestation). However, whether BP3 can affect gestation and fertility after implantation period is unknown. We aimed to study the effects on reproductive physiology of the offspring caused by perinatal exposure to BP3. C57BL/6 pregnant mice were dermally exposed to 50 mg BP3/kg bw.day or olive oil (vehicle) from gestation day 9 (gd9) to postnatal day 21 (pnd1). We observed no differences in mother's weights, duration of gestation, number of pups per mother, onset of puberty or sex ratio. The weights of the pups exposed to benzophenone-3 were transiently lower than those of the control. Estrous cycle was not affected by perinatal exposure to BP3. Besides, we performed a fertility assessment by continuous breeding protocol: at 10 weeks of age, one F1 female and one F1 male mouse from each group was randomly chosen from each litter and housed together for a period of 6 months. We noticed a reduction in the number of deliveries per mother among dams exposed to BP3 during the perinatal period. To see if this decreased fertility could be associated to an early onset of oocytes depletion, we estimated the ovarian reserve of germ cells. We found reduced number of oocytes and primordial follicles in BP3. In conclusion, perinatal exposure to BP3 leads to a decline in the reproductive capacity of female mice in a continuous breeding protocol linked to oocyte depletion.


Subject(s)
Benzophenones , Mice, Inbred C57BL , Oocytes , Prenatal Exposure Delayed Effects , Animals , Female , Benzophenones/toxicity , Benzophenones/administration & dosage , Pregnancy , Male , Prenatal Exposure Delayed Effects/chemically induced , Oocytes/drug effects , Mice , Fertility/drug effects , Sunscreening Agents/toxicity , Maternal Exposure/adverse effects
12.
Zygote ; 32(2): 161-169, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38465746

ABSTRACT

Environmental hypoxia adversely affects reproductive health in humans and animals at high altitudes. Therefore, how to alleviate the follicle development disorder caused by hypoxia exposure and to improve the competence of fertility in plateau non-habituated female animals are important problems to be solved urgently. In this study, a hypobaric hypoxic chamber was used for 4 weeks to simulate hypoxic conditions in female mice, and the effects of hypoxia on follicle development, proliferation and apoptosis of granulosa cells, reactive oxygen species (ROS) levels in MII oocyte and 2-cell rate were evaluated. At the same time, the alleviating effect of melatonin on hypoxic exposure-induced oogenesis damage was evaluated by feeding appropriate amounts of melatonin daily under hypoxia for 4 weeks. The results showed that hypoxia exposure significantly increased the proportion of antral follicles in the ovary, the number of proliferation and apoptosis granulosa cells in the follicle, and the level of ROS in MII oocytes, eventually led to the decline of oocyte quality. However, these defects were alleviated when melatonin was fed under hypoxia conditions. Together, these findings suggest that hypoxia exposure impaired follicular development and reduced oocyte quality, and that melatonin supplementation alleviated the fertility reduction induced by hypoxia exposure.


Subject(s)
Apoptosis , Fertility , Granulosa Cells , Hypoxia , Melatonin , Oocytes , Oogenesis , Ovarian Follicle , Reactive Oxygen Species , Melatonin/pharmacology , Animals , Female , Oogenesis/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Mice , Hypoxia/complications , Hypoxia/physiopathology , Granulosa Cells/drug effects , Oocytes/drug effects , Oocytes/physiology , Ovarian Follicle/drug effects , Fertility/drug effects , Cell Proliferation/drug effects , Antioxidants/pharmacology
13.
JBRA Assist Reprod ; 28(2): 331-340, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38546117

ABSTRACT

OBJECTIVE: To verify, based on a systematic literature review, the effects of the main analgesics on male fertility. DATA SOURCES: The studies were analyzed from the PubMed, SciELO and LILACS databases. STUDY SELECTION: The articles selected for the present review included: cohort studies; cross-sectional studies, clinical trials; complete studies; studies with animal models that addressed the proposed theme and that were published within the stipulated period from March 1, 2013, to March 31, 2023, in English, Portuguese and Spanish. These would later have to go through inclusion stages such as framing the type of study and exclusion criteria. DATA COLLECTION: Author's name, year of publication, study population, number of patients, analgesic, administration time, dose, and effect. CONCLUSIONS: There are in vitro and in vivo studies that link paracetamol and ibuprofen to endocrine and seminal changes that are harmful to male fertility. However, more clinical research is needed to determine the doses and timing of administration that affect fertility. The effects of aspirin on male fertility are still unclear due to the lack of studies and consistent methodologies. There is not enough research on dipyrone and its relationship with male fertility, requiring more studies in this area.


Subject(s)
Analgesics , Fertility , Humans , Male , Analgesics/adverse effects , Analgesics/therapeutic use , Fertility/drug effects , Infertility, Male/chemically induced , Infertility, Male/drug therapy , Ibuprofen/adverse effects , Acetaminophen/adverse effects , Acetaminophen/therapeutic use , Animals , Dipyrone/adverse effects , Aspirin/adverse effects , Aspirin/administration & dosage , Aspirin/therapeutic use
14.
J Med Entomol ; 61(3): 678-685, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38366896

ABSTRACT

Volatile pyrethroids are effective in reducing mosquito populations and repelling vectors away from hosts. However, many gaps in knowledge exist for the sublethal impacts of volatile pyrethroids on mosquitoes. To that end, transfluthrin exposures were conducted on a field strain of Aedes albopictus (Skuse) held as a laboratory colony. Dose-response analysis was conducted on both sexes at either 1-4 days old or 5-10 days old. Resultant concentration data were used to evaluate the LC20 and LC50 values in various mate pairings of treatments and controls in which either the male or female was from a selectively treated group and mated with a counterpart that was treated independently. Blood feeding proportion, delayed mortality after a 24-h recovery period, egg collection totals, and F1 larval survival were determined following transfluthrin treatment in the F0, but outcomes were not significant. In contrast, sterility was predicated on male treatment, with treated females resulting in higher overall egg viability. Treated males in the mating pair resulted in significantly lower egg viability and accelerated larval hatch in the F1. Additionally, the presence of sperm in female spermathecae was significantly diminished in test groups containing treated male mosquitoes. Male sublethal effects may be a critical determinant of a mixed population's reproductive success.


Subject(s)
Aedes , Cyclopropanes , Fertility , Fluorobenzenes , Insecticides , Animals , Aedes/drug effects , Male , Cyclopropanes/pharmacology , Female , Insecticides/pharmacology , Fertility/drug effects , Fluorobenzenes/pharmacology , Mosquito Control
15.
Hum Reprod Update ; 30(3): 243-261, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38237150

ABSTRACT

BACKGROUND: The last decade has seen increased research on the relationship between diet and male fertility, but there are no clearly defined nutritional recommendations for men in the preconception period to support clinical fertility outcomes. OBJECTIVE AND RATIONALE: The purpose of this scoping review is to examine the extent and range of research undertaken to evaluate the effect(s) of diet in the preconception period on male clinical fertility and reproductive outcomes. SEARCH METHODS: Four electronic databases (MEDLINE and EMBASE via Ovid, CAB Direct, and CINAHL via EBSCO) were searched from inception to July 2023 for randomized controlled trials (RCTs) and observational studies (prospective/retrospective, case-control, and cross-sectional). Intervention studies in male participants or couples aiming to achieve dietary or nutritional change, or non-intervention studies examining dietary or nutritional components (whole diets, dietary patterns, food groups or individual foods) in the preconception period were included. Controls were defined as any comparison group for RCTs, and any/no comparison for observational studies. Primary outcomes of interest included the effect(s) of male preconception diet on clinical outcomes such as conception (natural or via ART), pregnancy rates and live birth rates. Secondary outcomes included time to conception and sperm parameters. OUTCOMES: A total of 37 studies were eligible, including one RCT and 36 observational studies (prospective, cross-sectional, and case-control studies; four studies in non-ART populations) published between 2008 and 2023. Eight reported clinical outcomes, 26 reported on secondary outcomes, and three reported on both. The RCT did not assess clinical outcomes but found that tomato juice may benefit sperm motility. In observational studies, some evidence suggested that increasing fish or reducing sugar-sweetened beverages, processed meat or total fat may improve fecundability. Evidence for other clinical outcomes, such as pregnancy rates or live birth rates, showed no relationship with cereals, soy and dairy, and inconsistent relationships with consuming red meat or a 'healthy diet' pattern. For improved sperm parameters, limited evidence supported increasing fish, fats/fatty acids, carbohydrates and dairy, and reducing processed meat, while the evidence for fruits, vegetables, cereals, legumes, eggs, red meat and protein was inconsistent. Healthy diet patterns in general were shown to improve sperm health. WIDER IMPLICATIONS: Specific dietary recommendations for improving male fertility are precluded by the lack of reporting on clinical pregnancy outcomes, heterogeneity of the available literature and the paucity of RCTs to determine causation or to rule out reverse causation. There may be some benefit from increasing fish, adopting a healthy dietary pattern, and reducing consumption of sugar-sweetened beverages and processed meat, but it is unclear whether these benefits extend beyond sperm parameters to improve clinical fertility. More studies exploring whole diets rather than singular foods or nutritional components in the context of male fertility are encouraged, particularly by means of RCTs where feasible. Further assessment of core fertility outcomes is warranted and requires careful planning in high-quality prospective studies and RCTs. These studies can lay the groundwork for targeted dietary guidelines and enhance the prospects of successful fertility outcomes for men in the preconception period. Systematic search of preconception diet suggests that increasing fish and reducing sugary drinks, processed meats and total fat may improve male fertility, while consuming healthy diets, fish, fats/fatty acids, carbohydrates and dairy and reducing processed meat can improve sperm health.


Subject(s)
Diet , Fertility , Humans , Male , Pregnancy , Female , Fertility/drug effects , Preconception Care/methods , Pregnancy Rate
16.
Pest Manag Sci ; 80(6): 2596-2609, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38252701

ABSTRACT

BACKGROUND: Plutella xylostella (Linnaeus) is a destructive pest of cruciferous crops due to its strong reproductive capacity and extensive resistance to pesticides. Seminal fluid proteins (SFPs) are the main effective factors that determine the reproductive physiology and behaviour of both sexes. Although an increasing number of SFPs have been identified, the effects of astacins in SFPs on agricultural pests have not yet been reported. Here, we elucidated the mechanisms by which Sast1 (seminal astacin 1) regulates the fertility of Plutella xylostella (L.). RESULTS: PxSast1 was specifically expressed in the testis and accesssory gland. CRISPR/Cas9-induced PxSast1 knockout successfully constructed two homozygous mutant strains. Sast1 impaired the fertility of P. xylostella by separately regulating the reproductive capacity of males and females. Loss of PxSast1, on the one hand, significantly decreased the ability of males to mate and fertilize, mainly manifested as shortened mating duration, reduced mating competitiveness and decreased eupyrene sperm production; on the other hand, it significantly inhibited the expression of chorion genes in females, resulting in oogenesis deficits. Simultaneously, for mated females, the differentially expressed genes in signalling pathways related to oogenesis and chorion formation were significantly enriched after PxSast1 knockout. CONCLUSION: These analyses of the functions of PxSast1 as the regulator of spermatogenesis and oogenesis establish its importance in the fertility process of P. xylostella, as well as its potential as a promising target for genetic regulation-based pest control. © 2024 Society of Chemical Industry.


Subject(s)
Fertility , Insect Proteins , Moths , Animals , Moths/genetics , Moths/physiology , Moths/drug effects , Moths/growth & development , Fertility/drug effects , Male , Female , Insect Proteins/genetics , Insect Proteins/metabolism , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/metabolism
17.
Sci Rep ; 13(1): 15671, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37735181

ABSTRACT

Sperm quality can be easily influenced by living environmental and occupational factors. This study aimed to discover potential semen quality related living environmental and occupational factors, expand knowledge of risk factors for semen quality, strengthen men's awareness of protecting their own fertility and assist the clinicians to judge the patient's fertility. 465 men without obese or underweight (18.5 < BMI < 28.5 kg/m2), long-term medical history and history of drug use, were recruited between June 2020 to July 2021, they are in reproductive age (25 < age < 45 years). We have collected their semen analysis results and clinical information. Logistic regression was applied to evaluate the association of semen quality with different factors. We found that living environment close to high voltage line (283.4 × 106/ml vs 219.8 × 106/ml, Cohen d = 0.116, P = 0.030) and substation (309.1 × 106/ml vs 222.4 × 106/ml, Cohen d = 0.085, P = 0.015) will influence sperm count. Experienced decoration in the past 6 months was a significant factor to sperm count (194.2 × 106/ml vs 261.0 × 106/ml, Cohen d = 0.120, P = 0.025). Living close to chemical plant will affect semen PH (7.5 vs 7.2, Cohen d = 0.181, P = 0.001). Domicile close to a power distribution room will affect progressive sperm motility (37.0% vs 34.0%, F = 4.773, Cohen d = 0.033, P = 0.030). Using computers will affect both progressive motility sperm (36.0% vs 28.1%, t = 2.762, Cohen d = 0.033, P = 0.006) and sperm total motility (57.0% vs 41.0%, Cohen d = 0.178, P = 0.009). After adjust for potential confounding factors (age and BMI), our regression model reveals that living close to high voltage line is a risk factor for sperm concentration (Adjusted OR 4.03, 95% CI 1.15-14.18, R2 = 0.048, P = 0.030), living close to Chemical plants is a protective factor for sperm concentration (Adjusted OR 0.15, 95% CI 0.05-0.46, R2 = 0.048, P = 0.001) and total sperm count (Adjusted OR 0.36, 95% CI 0.13-0.99, R2 = 0.026, P = 0.049). Time spends on computer will affect sperm total motility (Adjusted OR 2.29, 95% CI 1.11-4.73, R2 = 0.041, P = 0.025). Sum up, our results suggested that computer using, living and working surroundings (voltage line, substation and chemical plants, transformer room), and housing decoration may association with low semen quality. Suggesting that some easily ignored factors may affect male reproductive ability. Couples trying to become pregnant should try to avoid exposure to associated risk factors. The specific mechanism of risk factors affecting male reproductive ability remains to be elucidated.


Subject(s)
East Asian People , Fertility , Neighborhood Characteristics , Semen Analysis , Social Determinants of Health , Working Conditions , Humans , Male , Middle Aged , Cross-Sectional Studies , Semen , Sperm Motility , Adult , Risk Factors , Fertility/drug effects , Fertility/radiation effects
18.
Dermatologie (Heidelb) ; 74(7): 481-489, 2023 Jul.
Article in German | MEDLINE | ID: mdl-37289206

ABSTRACT

BACKGROUND: Advances in the treatment of cancer and in reproductive medicine make it possible for many patients to start their family planning even after cytotoxic therapy. Depending on the age of the patient, the planned oncological therapy and its urgency, various methods can be used to preserve the fertility of affected women. OBJECTIVES: Presentation of facts about fertility, as well as information about fertility-preserving methods for women, so that they can be discussed with and offered to patients. MATERIALS AND METHODS: Presentation and discussion of basic research, clinical data, and expert recommendations on fertility and fertility preservation. RESULTS: Well-established fertility-protective techniques now exist for women that offer a realistic chance of subsequent pregnancy. These include transposition of the gonads prior to radiotherapy, gonadal protection with gonadotropin-releasing hormone (GnRH) analogues and cryopreservation of fertilized and unfertilized oocytes, as well as cryopreservation of ovarian tissue. CONCLUSIONS: Fertility-protective techniques are an integral part of oncological treatments for prepubertal girls and patients of reproductive age. The various measures must be discussed individually with the patient as part of a multimodal concept. Prompt and timely collaboration with a specialized center is essential.


Subject(s)
Antineoplastic Agents , Cryopreservation , Fertility Preservation , Fertility , Neoplasms , Humans , Female , Fertility/drug effects , Neoplasms/drug therapy , Oocytes , Ovary , Antineoplastic Agents/adverse effects , Gonadotropin-Releasing Hormone
19.
Trop Anim Health Prod ; 55(3): 175, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37099042

ABSTRACT

This study was aimed at investigating the effects of vitamin A (VITA), vitamin E (VITE), and combined ß-carotene plus vitamin E (ßCAR+VITE) injections on some fertility parameters in ewes. Estrus synchronization was performed by treating the ewes with intravaginal FGA sponges impregnated with 30 mg of fluorogestone acetate. On the days of the insertion and withdrawal of the intravaginal sponges, groups VITA, VITE, and ßCAR+VITE were administered with 500 000 IU of vitamin A, 50 mg of vitamin E, and a combination of ß-carotene plus vitamin E, respectively. The ewes in the control group (C) were maintained for control purposes. Statistically significant differences were determined between groups VITA and ßCAR+VITE, groups VITE and ßCAR+VITE, and groups C and ßCAR+VITE, as well as groups VITE and C, groups VITA and C for the multiple birth rates. While significant differences were determined between groups VITA and C, groups VITE and C, and groups ßCAR+VITE and C for the lambing rates, it was ascertained that the ratio of newborn lambs to delivered ewes (litter size) significantly differed between groups VITA and ßCAR+VITE, groups VITA and C, groups VITE and ßCAR+VITE, groups VITE and C, and groups ßCAR+VITE and C. The highest MDA level and lowest GSH level were determined on day 20 after mating in the control group. In conclusion, it is suggested that both multiple birth rates and litter size can be increased by the combined administration of ß-carotene and vitamin E.


Subject(s)
Fertility , Sheep , Vitamin A , Vitamin E , beta Carotene , Animals , Female , Pregnancy , beta Carotene/pharmacology , Estrus Synchronization , Fertility/drug effects , Injections/veterinary , Sheep/physiology , Vitamin A/pharmacology , Vitamin E/pharmacology , Male
20.
Adv Exp Med Biol ; 1391: 59-69, 2022.
Article in English | MEDLINE | ID: mdl-36472816

ABSTRACT

Pesticides have benefited mankind in many ways like agriculture, industrial and health sectors. On the other hand, conversely their deleterious effects in both, humans and animals are also alarming. Pesticides including organophosphates, organochlorines, carbamates, pyrethrins and pyrethroids are found sufficiently in the environment resulting in everyday human exposure. This is of a huge concern because most of the pesticides are known to target all the physiological functions of both humans and animals. Indeed, reproduction, being one of the most important physiological processes, that is affected by the daily exposure to pesticides and leading to infertility issues. The present study summarizes the exposure of men and women to certain pesticides resulting in different infertility concerns like sperm abnormalities, decreased fertility, abnormal sperm count and motility, testicular atrophy, ovarian dysfunction, spontaneous abortions, disruption of hypothalamic-pituitary-gonadal axis, etc. So, this article will be helpful in perceiving the mechanism of reproductive toxicity of different pesticides and their management before any alarm of danger.


Subject(s)
Fertility , Pesticides , Female , Humans , Male , Semen , Pesticides/toxicity , Animals , Fertility/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...